Disinformation and Resistance in Google Maps Restaurant Reviews: A Computational and Communicational Analysis
pdf (Español)
html (Español)
epub (Español)
xml (Español)

Keywords

disinformation
resistance
emotions
reviews
algorithms
text analysis
subjectivity

How to Cite

Lozano Gutiérrez, M. D., Rojas Flores, F., & Vázquez Bravo, L. E. (2025). Disinformation and Resistance in Google Maps Restaurant Reviews: A Computational and Communicational Analysis. International Journal of Organizations, (35), 89–113. https://doi.org/10.17345/rio35.507

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

Online reviews are decisive in current consumption patterns. Google Maps is a key player reshaping the restaurant sector by monetizing reviews and employing algorithmic management. Although reviews could serve as a channel of resistance, in practice they are dominated by a questionable optimism. This study analyzes the textual characteristics (emotion, polarity, subjectivity) of reviews for Puebla restaurants on Google Maps. The aim is to identify how these linguistic properties affect the transparency and fairness of the economic ecosystem shaped by the platform, determining whether they function more as critical tools or as elements aligned with its business model. Using opinion mining and Natural Language Processing (NLP), 1,714 reviews of Poblano cuisine restaurants on Google Maps were analyzed. The results reveal a high emotional load: joy exhibits positive polarity and high subjectivity, whereas sadness and anger tend toward objectivity and neutral polarity. The study suggests that proactive solicitation of reviews by businesses fosters positive feedback loops, intensifying emotional subjectivity. Although consumers rely on these reviews, they prioritize affective and social aspects over objective data—a trend exacerbated by emotional overload, lack of verification, and algorithmic filtering. This dynamic suggests a perception of Google Maps more as a social network than a search platform, thereby diluting its critical potential and the use of reviews as resistance. Consequently, the validity of reviews as tools for informed decision-making is called into question.

https://doi.org/10.17345/rio35.507
pdf (Español)
html (Español)
epub (Español)
xml (Español)

References

Almiron-Chamadoira, P. (2018). Online Reviews as a Genre: A semiotic analysis of Ama-zon.com 2010-2014 reviews on the categories «Clothing» and «Electronics». Proceed-ings of the 1st International Conference on Digital Tools & Uses Congress - DTUC ’18, 1-4. https://doi.org/10.1145/3240117.3240128

Amos, C., & Zhang, L. (2024). Consumer reactions to perceived undisclosed ChatGPT usage in an online review context. Telematics and Informatics, 93, 102163. https://doi.org/10.1016/j.tele.2024.102163

Anagnostopoulou, S., Buhalis, D., Kountouri, I., Manousakis, E., & Tsekrekos, A. (2020). The impact of online reputation on hotel profitability. International Journal of Con-temporary Hospitality Management, forthcoming. https://doi.org/10.1108/IJCHM-03-2019-0247

Anderson, M., & Magruder, J. (2012). Learning from the Crowd: Regression Discontinuity Estimates of the Effects of an Online Review Database. The Economic Journal, 122(563), 957-989. https://doi.org/10.1111/j.1468-0297.2012.02512.x

Banjar, A., Ahmed, Z., Daud, A., Abbasi, R., & Dawood, H. (2020). Aspect-Based Sentiment Analysis for Polarity Estimation of Customer Reviews on Twitter. Computers, Mate-rials & Continua, 67, 2203-2225. https://doi.org/10.32604/cmc.2021.014226

Biyani, P., Bhatia, S., Caragea, C., & Mitra, P. (2014). Using non-lexical features for identify-ing factual and opinionative threads in online forums. Knowledge-Based Systems, 69, 170-178. https://doi.org/10.1016/j.knosys.2014.04.048

Bolton, G., Greiner, B., & Ockenfels, A. (2013). Engineering Trust: Reciprocity in the Pro-duction of Reputation Information. Management Science, 59(2), 265-285.

BrightLocal, S. (2024, marzo 6). Local Consumer Review Survey 2024: Trends, Behaviors, and Platforms Explored. BrightLocal. https://www.brightlocal.com/research/local-consumer-review-survey/

Candel-Mora, M. Á. (2022). Big data to assess genre-specific features of the machine transla-tion output of online travel reviews in Spanish. Quaderns de Filologia - Estudis Lin-güístics, 27, 49-69. https://doi.org/10.7203/qf.0.24667

Castells, M. (2012). Redes de indignación y esperanza: Los movimientos sociales en la era de Internet. Alianza Editorial.

CMA. (2016, junio 17). Online reviews and endorsements. GOV.UK. https://www.gov.uk/cma-cases/online-reviews-and-endorsements

Comisión Europea. (2022). Cómo combatir las fake news—Comisión Europea. https://spain.representation.ec.europa.eu/noticias-eventos/noticias-0/como-combatir-las-fake-news-2022-02-28_es

Cruz, B. D. P. A., Silva, S. C., & Ross, S. D. (2021). THE SOCIAL TV PHENOMENON AND FAKE ONLINE RESTAURANT REVIEWS. Tourism and Hospitality Management, 27(1), 25-42. https://doi.org/10.20867/thm.27.1.2

Damasio, A. R. (2019). El error de Descartes: La emoción, la razón y el cerebro humano. Paidós.

Dellarocas, C. (2000). Immunizing online reputation reporting systems against unfair ratings and discriminatory behavior. In Proceedings of the 2nd ACM Conference on Electronic Commerce (pp. 150-157).

Ekman, P. (2003). Emotions revealed: Recognizing faces and feelings to improve communication and emotional life. Henry Holt and Company.

Gottschalk, S. A., & Mafael, A. (2017). Cutting through the online review jungle—Investigating selective eWOM processing. Journal of Interactive Marketing, 37, 89-104. https://doi.org/10.1016/j.intmar.2016.06.001

Gutt, D., Neumann, J., Zimmermann, S., Kundisch, D., & Chen, J. (2019). Design of review systems – A strategic instrument to shape online reviewing behavior and economic outcomes. The Journal of Strategic Information Systems, 28(2), 104-117. https://doi.org/10.1016/j.jsis.2019.01.004

Habermas, J. (1991). Escritos sobre moralidad y eticidad (M. Jiménez Redondo, Trad.). Paidós.

Habermas, J. (1986). Historia y crítica de la opinión pública: La transformación estructural de la vida pública (G. Muntañola, Trad.). Gustavo Gili. (Strukturwandel der Öffentlichkeit ,1962).

Habermas, J. (1987). Teoría de la acción comunicativa (M. Jiménez Redondo, Trad.). Taurus. (Theorie des kommunikativen Handelns, 1981).

Hajek, P., & Sahut, J.-M. (2022). Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection. Technological Forecasting and Social Change, 177, 121532. https://doi.org/10.1016/j.techfore.2022.121532

Hlee, S., Lee, H., Koo, C., & Chung, N. (2021). Fake Reviews or Not: Exploring the relation-ship between time trend and online restaurant reviews. Telematics and Informatics, 59, 101560. https://doi.org/10.1016/j.tele.2020.101560

Horowitz, M., Cushion, S., Dragomir, M., Gutiérrez Manjón, S., & Pantti, M. (2022). A Framework for Assessing the Role of Public Service Media Organizations in Counter-ing Disinformation. Digital Journalism, 10(5), 843-865. https://doi.org/10.1080/21670811.2021.1987948

Hu, N., Bose, I., Gao, Y., & Liu, L. (2011). Manipulation in digital word-of-mouth: A reality check for book reviews. Decis. Support Syst., 50(3), 627-635. https://doi.org/10.1016/j.dss.2010.08.013

Hussain, J., Azhar, Z., Ahmad, H. F., Afzal, M., Raza, M., & Lee, S. (2022). User Experience Quantification Model from Online User Reviews. Applied Sciences, 12(13), 6700. https://doi.org/10.3390/app12136700

Kronrod, A. (2023). 88 Language and emotion in business communication. En G. L. Schie-wer, J. Altarriba, & B. C. Ng (Eds.), Volume 3 (pp. 1831-1852). De Gruyter Mouton. https://doi.org/10.1515/9783110795486-024

Kwok, H., Singh, P., & Heimans, S. (2023). The Regime of «Post-Truth»: COVID-19 and the Politics of Knowledge. Discourse: Studies in the Cultural Politics of Education, 44(1), 106-120. https://doi.org/10.1080/01596306.2021.1965544

Leakey, R. (1981). El origen del hombre. Consejo Nacional de Ciencia y Tecnología (CONACYT).

Lee, K., Ham, J., Cantoni, L., & Koo, C. (2022). Identifying the nature of authentic and fake reviews in restaurant context. Journal of Travel & Tourism Marketing, 39(3), 353-369. https://doi.org/10.1080/10548408.2022.2089955

Li, H., Meng, F., & Pan, B. (2020). How does review disconfirmation influence customer online review behavior? A mixed-method investigation. International Journal of Con-temporary Hospitality Management, 32(11), 3685-3703. https://doi.org/10.1108/IJCHM-03-2020-0234

Linares Columbié, R. Patterson Hernández, M. y Viciedo Tijera, L. (2000). La información a través del tiempo. 8(3):228-38

Lozano Gutiérrez, M. D. (2023). COMUNICACIÓN PRODUCTIVA, ESTILOS DE LIDERAZ-GO Y COMPROMISO EN EL SERVICIO. UNA INVESTIGACIÓN MIXTA SOBRE LA PERTENENCIA, EL TRABAJO EN EQUIPO Y LA ORIENTACIÓN AL CONSUMIDOR EN RESTAURANTES DE GASTRONOMÍA MEXICANA EN PUEBLA. https://doi.org/10.13140/RG.2.2.28558.74566

Luca, M., & Zervas, G. (2016). Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud. Management Science, 62(12), 3412-3427. https://doi.org/10.1287/mnsc.2015.2304

Malbon, J. (2013). Taking Fake Online Consumer Reviews Seriously. Journal of Consumer Policy, 36(2), 139-157. https://doi.org/10.1007/s10603-012-9216-7

Manes, E. & Tchetchik, Anat. (2018). The role of electronic word of mouth in reducing in-formation asymmetry: An empirical investigation of online hotel booking. Journal of Business Research, 85, 185-196. https://doi.org/10.1016/j.jbusres.2017.12.019

Maturana, H., y Varela, F. (2009). El árbol del conocimiento: Las bases biológicas del entendimiento humano. Ediciones Universitarias en Santiago de Chile.

Moral-Martín, D., Pac Salas, D., y Minguijón, J. (2022). Resistencia creativa: una alternativa organizativa viable en el actual capitalismo de plataformas. Editorial Dykinson.

Northwestern University. (2021, abril 14). From Reviews to Revenue Medill Spiegel Research Center. Medill Spiegel Research Center. https://spiegel.medill.northwestern.edu/from-reviews-to-revenue/

Pantelidis, I. (2010). Electronic Meal Experience: A Content Analysis of Online Restaurant Comments. Cornell Hospitality Quarterly - CORNELL HOSP Q, 51, 483-491. https://doi.org/10.1177/1938965510378574

Perez, J. M., Rajngewerc, M., Giudici, J. C., Furman, D. A., Luque, F., Alemany, L. A., & Martínez, M. V. (2023). pysentimiento: A Python Toolkit for Opinion Mining and Social NLP tasks. In Review. https://doi.org/10.21203/rs.3.rs-3570648/v1

Phuangsuwan, P., Siripipatthanakul, S., Limna, P., & Pariwongkhuntorn, N. (2024). The im-pact of Google Maps application on the digital economy. Phuangsuwan, P., Siripipat-thanakul, S., Limna, P., & Pariwongkhuntorn, (2024), 192-203.

Plaza-del-Arco, F. M., & Strapparava, C. (2020). EmoEvent: A Multilingual Emotion Corpus based on different Events. 2020.

Schoenmueller, V., Netzer, O., & Stahl, F. (2020). The Polarity of Online Reviews: Preva-lence, Drivers and Implications. Journal of Marketing Research, 57(5), 853-877. https://doi.org/10.1177/0022243720941832

Schuckert, M., Liu, X., & Law, R. (2015). Insights into Suspicious Online Ratings: Direct Evidence from TripAdvisor. Asia Pacific Journal of Tourism Research, 21. https://doi.org/10.1080/10941665.2015.1029954

Shannon, C. E., y Weaver, W. (1949). A mathematical theory of communication. University of Illinois Press.

Shih, C.-F., Huang, S.-L., & Huang, H.-C. (2023). The dissemination and impacts of decep-tive eWOM: A dynamic process perspective. Behaviour and Information Technology, 42(8), 1155-1179.

Sennett, R. (2009). El artesano (M. A. Galmarini, Trad.). Editorial Anagrama. (Obra original publicada en 2008)

Steur, A. J., Fritzsche, F., & Seiter, M. (2022). It’s all about the text: An experimental inves-tigation of inconsistent reviews on restaurant booking platforms. Electronic Markets, 32(3), 1187-1220. https://doi.org/10.1007/s12525-022-00525-3

Tan, H., Lv, X., Liu, X., & Gursoy, D. (2018). Evaluation nudge: Effect of evaluation mode of online customer reviews on consumers’ preferences. Tourism Management, 65, 29-40. https://doi.org/10.1016/j.tourman.2017.09.011

Taste Atlas (2023) Where to eat? Puebla de Zaragoza, México https://www.tasteatlas.com/puebla-de-zaragoza

United Nations Educational, Scientific and Cultural Organization UNESCO. (2010). La cocina tradicional mexicana, cultura comunitaria, ancestral y viva - El paradigma de Michoa-cán. https://ich.unesco.org/es/RL/la-cocina-tradicional-mexicana-cultura-comunitaria-ancestral-y-viva-el-paradigma-de-michoacan-00400

Wang, B., & Kuan, K. (2022). Understanding the Message and Formulation of Fake Online Reviews: A Language-production Model Perspective. AIS Transactions on Human-Computer Interaction, 14, 207-229. https://doi.org/10.17705/1thci.00167

Wiener, N. (1948). Cibernética: o el control y la comunicación en los animales y las máquinas. Tusquets

Wu, Y., Ngai, E., Pengkun, W., & Wu, C. (2020). Fake online reviews: Literature review, syn-thesis, and directions for future research. Decision Support Systems, 132, 113280. https://doi.org/10.1016/j.dss.2020.113280

Ye, Q., Law, R., & Gu, B. (2009). The impact of online user reviews on hotel room sales. In-ternational Journal of Hospitality Management, 28(1), 180-182. https://doi.org/10.1016/j.ijhm.2008.06.011

Yunus. (2022, agosto 1). Google Maps Scraping in Python | Outscraper. https://outscraper.com/google-maps-scraping-in-python/

Zhang, D., Zhou, L., Kehoe, J. L., & Kilic, I. Y. (2016). What Online Reviewer Behaviors Really Matter? Effects of Verbal and Nonverbal Behaviors on Detection of Fake Online Reviews. Journal of Management Information Systems, 33(2), 456-481. https://doi.org/10.1080/07421222.2016.1205907

Zhang, Z., Li, Y., Li, H., & Zhang, Z. (2022). Restaurants’ motivations to solicit fake reviews: A competition perspective. International Journal of Hospitality Management, 107, 103337. https://doi.org/10.1016/j.ijhm.2022.103337

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 International Journal of Organizations